Abstract

Abstract. This paper presents two new modeling components based on the object modeling system v3 (OMS3) for the calculation of the shortwave incident radiation (Rsw↓) on complex topography settings, and the implementation of several ancillary tools. The first component, NewAGE-SwRB, accounts for elevation slope, aspect, shadow of the sites, and uses suitable parameterization for obtaining the cloudless irradiance. A second component, NewAGE-DEC-MOD's is implemented to estimate the irradiance reduction due to the presence of clouds according to three parameterizations. To obtain a working modeling composition that is comparable with ground data at measurement stations the two components are connected to a kriging component. With the help of an additional component, NewAGE-V (verification package), the performance of modeled (Rsw↓) is quantitatively evaluated. The two components (and the various parameterizations they contain) are tested using the data from three basins, and some simple verification tests were carried out to assess the goodness of the methods used. Moreover, a raster mode test is performed in order to show the capability of the system in providing solar radiation raster maps. The components are part of a larger system, JGrass-NewAGE, their input and outputs are geometrical objects immediately displayed in a geographical information system (GIS). They can be used seamlessly with the various modeling solutions available in JGrass-NewAGE for the estimation of long wave radiation, evapotranspiration, and snow melting, as well as standalone components to just estimate shortwave radiation for various uses. The modularity of the approach leads to more accurate physical-statistical studies aimed to assess in depth the components' performances and extends their results spatially, without the necessity of recoding any part of the component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.