Abstract

The southwestern (SW) coast of Africa (Namibia and Angola) features long sandy beaches and a wave climate dominated by energetic swells from the Southsouthwest (SSW), therefore approaching the coast with a very high obliquity. Satellite images reveal that along that coast there are many shoreline sand waves with wavelengths ranging from 2 to 8 km. A more detailed study, including a Fourier analysis of the shoreline position, yields the wavelengths (among this range) with the highest spectral density concentration. Also, it becomes apparent that at least some of the sand waves are dynamically active rather than being controlled by the geological setting. A morphodynamic model is used to test the hypothesis that these sand waves could emerge as free morphodynamic instabilities of the coastline due to the obliquity in wave incidence. It is found that the period of the incident water waves, Tp, is crucial to establish the tendency to stability or instability, instability increasing for decreasing period, whilst there is some discrepancy in the observed periods. Model results for Tp = 7–8 s clearly show the tendency for the coast to develop free sand waves at about 4 km wavelength within a few years, which migrate to the north at rates of 0.2–0.6 km yr−1. For larger Tp or steeper profiles, the coast is stable but sand waves originated by other mechanisms can propagate downdrift with little decay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.