Abstract

The results of numerical modeling of intense shock wave propagation after explosion in a mine opening with permeable screen are presented. The problem is solved in the equilibrium non-viscous formulation without regard to chemical reactions and with averaged composition of mine air. It is shown that for a screen composed of four similar permeable barriers arranged as a labyrinth, the incoming shock wave has a strongest impact on the first barrier. As a consequence of weakening of the shock wave front on the first barrier, the rest barriers experience much less loading. In order to decrease peak loads on a load-bearing frame, it is necessary to reduce areas of flat front surfaces of metal structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.