Abstract
In cellular immunity, T cells recognize peptide antigens bound and presented by major histocompatibility complex (MHC) proteins. The motions of peptides bound to MHC proteins play a significant role in determining immunogenicity. However, existing approaches for investigating peptide/MHC motional dynamics are challenging or of low throughput, hindering the development of algorithms for predicting immunogenicity from large databases, such as those of tumor or genetically unstable viral genomes. We addressed this by performing extensive molecular dynamics simulations on a large structural database of peptides bound to the most commonly expressed human class-I MHC protein, HLA-A*0201. The simulations reproduced experimental indicators of motion and were used to generate simple models for predicting site-specific, rapid motions of bound peptides through differences in their sequence and chemical composition alone. The models can easily be applied on their own or incorporated into immunogenicity prediction algorithms. Beyond their predictive power, the models provide insight into how amino acid substitutions can influence peptide and protein motions and how dynamic information is communicated across peptides. They also indicate a link between peptide rigidity and hydrophobicity, two features known to be important in influencing cellular immune responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.