Abstract
The ability to understand and eventually predict the emergence of information and activation cascades in social networks is core to complex socio-technical systems research. However, the complexity of social interactions makes this a challenging enterprise. Previous works on cascade models assume that the emergence of this collective phenomenon is related to the activity observed in the local neighborhood of individuals, but do not consider what determines the willingness to spread information in a time-varying process. Here we present a mechanistic model that accounts for the temporal evolution of the individual state in a simplified setup. We model the activity of the individuals as a complex network of interacting integrate-and-fire oscillators. The model reproduces the statistical characteristics of the cascades in real systems, and provides a framework to study the time evolution of cascades in a state-dependent activity scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.