Abstract

Predicting segregation and mixing of polydisperse granular materials in industrial processes remains a challenging problem. Here, we extend the application of a general predictive continuum model that captures the effects of segregation, diffusion, and advection in two ways. First, we consider polydisperse segregating flow in developing steady segregation and in developing unsteady segregation. In both cases, several terms in the model that were zero in the previously examined case of fully developed streamwise‐periodic steady segregation in a chute are now non‐zero, which makes application of the model substantially more challenging. Second, we apply the polydisperse approach to density polydisperse materials with the same particle size. Predictions of the model agree quantitatively with experimentally validated discrete element method (DEM) simulations of both size polydisperse and density polydisperse mixtures having uniform, triangular, and log‐normal distributions. © 2018 American Institute of Chemical Engineers AIChE J, 65: 882–893, 2019

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.