Abstract

The primary carbide in high carbon chromium bearing steels, which arises from solute segregation during non-equilibrium solidification, is one of the key factors affecting the mechanical properties and performance of the related components. In this work, the effects of carbide forming element diffusion, primary austenite grain size, and the cooling rate on solute segregation and carbide precipitation during the solidification of an Fe–C binary alloy were studied by the phase-field method coupled with a thermodynamic database. It was clarified that increasing the ratio of solute diffusivity in solid and liquid, refining the grain size of primary austenite to lower than a critical value, and increasing the cooling rate can reduce the solute segregation and precipitation of primary carbide at late solidification. Two characteristic parameters were introduced to quantitatively evaluate the solute segregation during solidification including the phase fraction threshold of primary austenite when the solute concentration in liquid reaches the eutectic composition, and the maximum segregation ratio. Both parameters can be well-correlated to the ratio of solute diffusivity in solid and liquid, the grain size of primary austenite, and the cooling rate, which provides potential ways to control the solute segregation and precipitation of primary carbide in bearing steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.