Abstract

BackgroundDespite the widely recognized importance of aquatic processes for bridging gaps in the global carbon cycle, there is still a lack of understanding of the role of riverbed processes for carbon flows and stocks in aquatic environments. Here, we added a sediment diagenesis and sediment carbon (C) resuspension module into the SWAT-C model and tested it for simulating both particulate organic C (POC) and dissolved organic C (DOC) fluxes using 4 years of monthly observations (2014–2017) in the Tuckahoe watershed (TW) in the U.S. Mid-Atlantic region.ResultsSensitivity analyses show that parameters that regulate POC deposition in river networks are more sensitive than those that determine C resuspension from sediments. Further analyses indicate that allochthonous contributions to POC and DOC are about 36.6 and 46 kgC ha−1 year−1, respectively, while autochthonous contributions are less than 0.72 kgC ha−1 year−1 for both POC and DOC (less than 2% of allochthonous sources). The net deposition of POC on the riverbed (i.e., 11.4 kgC ha−1 year−1) retained ca. 31% of terrestrial inputs of POC. In addition, average annual buried C was 0.34 kgC ha−1 year−1, accounting for only 1% of terrestrial POC inputs or 3% of net POC deposition. The results indicate that about 79% of deposited organic C was converted to inorganic C (CH4 and CO2) in the sediment and eventually released into the overlying water column.ConclusionThis study serves as an exploratory study on estimation of C fluxes from terrestrial to aquatic environments at the watershed scale. We demonstrated capabilities of the SWAT-C model to simulate C cycling from uplands to riverine ecosystems and estimated C sinks and sources in aquatic environments. Overall, the results highlight the importance of including carbon cycle dynamics within the riverbed in order to accurately estimate aquatic carbon fluxes and stocks. The new capabilities of SWAT-C are expected to serve as a useful tool to account for those processes in watershed C balance assessment.

Highlights

  • Despite the widely recognized importance of aquatic processes for bridging gaps in the global carbon cycle, there is still a lack of understanding of the role of riverbed processes for carbon flows and stocks in aquatic environments

  • This study developed a sediment diagenesis and sediment carbon (C) resuspension module within the framework of the Soil and Water Assessment Tool (SWAT)-C model to improve the simulation of riverine organic C cycling

  • The new version of SWATC was tested for simulating both particulate organic C (POC) and dissolved organic C (DOC) fluxes against 4 years of monthly observations (2014–2017) in a small watershed, i.e., the Tuckahoe watershed (TW) in the U.S Mid-Atlantic region

Read more

Summary

Results

Sensitivity analyses show that parameters that regulate POC deposition in river networks are more sensitive than those that determine C resuspension from sediments. Further analyses indicate that allochthonous contributions to POC and DOC are about 36.6 and 46 kgC ha−1 year−1, respectively, while autochthonous contributions are less than 0.72 kgC ha−1 year−1 for both POC and DOC (less than 2% of allochthonous sources). The net deposition of POC on the riverbed (i.e., 11.4 kgC ha−1 year−1) retained ca. Average annual buried C was 0.34 kgC ha−1 year−1, accounting for only 1% of terrestrial POC inputs or 3% of net POC deposition. The results indicate that about 79% of deposited organic C was converted to inorganic C (­CH4 and ­CO2) in the sediment and eventually released into the overlying water column

Conclusion
Background
Results and discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.