Abstract

Estimates of canopy and fruit fresh mass are useful for more accurate interpretation of data from the Trellis Tension Monitor, a tool for real-time monitoring of plant growth and predicting yield in trellised crops. In grapevines (Vitis labruscana Bailey), measurements of shoot and fruit fresh mass were collected at frequent intervals (14 to 21 days) over 5 years, and these data were correlated with variables that could be obtained nondestructively: shoot length, number of leaves per shoot, and number of clusters per shoot. Shoot length provided a good estimator of shoot fresh mass in all years. Nonlinear logistic regression models described the dynamics of canopy growth from bloom to the early stages of ripening, which often is poorly represented by simple linear regression approaches to seasonal data. A generalized function indicated a lower bound of ≈600 degree-days, after which an increase in shoot fresh mass could be considered on average to contribute only slightly to further increases in trellis wire tension. The dynamics of fruit mass were captured adequately by a nonlinear function, but not as well as vegetative mass because of larger variances in fruit mass. The number of clusters per shoot was associated with fruit mass only after the accumulation of ≈550 degree-days or, equivalently, the time at which fruit mass exceeded ≈25 g per shoot. Seasonal dynamics of the ratio of fruit to vegetative fresh mass were not sufficiently discernable by the logistic models because of the dominance of fruit mass and its large interannual variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call