Abstract
In this work we present a fast, robust and flexible procedure to simulate electronic signals of scintillator units: plastic scintillator material embedded with a wavelength shifter optical fiber coupled to a photo-multiplier tube which, in turn, is plugged to a front-end electronic board. The simple rationale behind the simulation chain allows to adapt the procedure to a broad range of detectors based on that kind of units. We show that, in order to produce realistic results, the simulation parameters can be properly calibrated against laboratory measurements and used thereafter as input of the simulations. Simulated signals of atmospheric background cosmic ray muons are presented and their main features analyzed and validated using actual measured data. Conversely, for any given practical application, the present simulation scheme can be used to find an adequate combination of photo-multiplier tube and optical fiber at the prototyping stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.