Abstract
Sport and tactical populations are often impacted by musculoskeletal injury. Many publications have highlighted that risk is correlated with multiple variables. There do not appear to be existing studies that have evaluated a predetermined combination of risk factors that provide a pragmatic model for application in tactical and/or sports settings. To develop and test the predictive capability of multivariable risk models of lower extremity musculoskeletal injury during cadet basic training at the U.S.Military Academy. Cadets from the class of 2022 served as the study population. Sex and injury history were collected by questionnaire. Body Mass Index (BMI) and aerobic fitness were calculated during testing in the first week of training. Movement screening was performed using the Landing Error Scoring System during week 1 and cadence was collected using an accelerometer worn throughout initial training. Kaplan-Meier survival curves estimated group differences in time to the first musculoskeletal injury during training. Cox regression was used to estimate hazard ratios (HRs) and Akaike Information Criterion (AIC) was used to compare model fit. Cox modeling using HRs indicated that the following variables were associated with injury risk : Sex, history of injury, Landing Error Scoring System Score Category, and Physical Fitness Test (PT) Run Score. When controlling for sex and history of injury, amodel including aerobic fitness and BMI outperformed the model including movement screening risk and cadence (AIC: 1068.56 vs. 1074.11) and a model containing all variables that were significant in the univariable analysis was the most precise (AIC: 1063.68). In addition to variables typically collected in this tactical setting (Injury History, BMI, and aerobic fitness), the inclusion of kinematic testing appears to enhance the precision of the risk identification model and will likely continue to be included in screening cadets at greater risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.