Abstract

PGT121 is a broadly neutralizing antibody in clinical development for the treatment and prevention of HIV-1 infection via passive administration. PGT121 targets the HIV-1 V3-glycan and demonstrated potent antiviral activity in a phase I clinical trial. Resistance to PGT121 monotherapy rapidly occurred in the majority of participants in this trial with the sampled rebound viruses being entirely resistant to PGT121 mediated neutralization. However, two individuals experienced long-term ART-free viral suppression following antibody infusion and retained sensitivity to PGT121 upon viral rebound. Here, we develop mathematical models of the HIV-1 dynamics during this phase I clinical trial. We utilize these models to understand the dynamics leading to PGT121 resistance and to identify the mechanisms driving the observed long-term viral control. Our modeling highlights the importance of the relative fitness difference between PGT121 sensitive and resistant subpopulations prior to treatment. Specifically, by fitting our models to data, we identify the treatment-induced competitive advantage of previously existing or newly generated resistant population as a primary driver of resistance. Finally, our modeling emphasizes the high neutralization ability of PGT121 in both participants who exhibited long-term viral control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.