Abstract

Summary Permanent downhole gauges (PDGs) provide a continuous source of downhole pressure, temperature, and sometimes flow-rate data. Until recently, the measured temperature data have been largely ignored, although a close observation of the temperature measurements reveals a response to changes in flow rate and pressure. This suggests that the temperature measurements may be a useful source of reservoir information. In this study, reservoir temperature-transient models were developed for single- and multiphase-fluid flows, as functions of formation parameters, fluid properties, and changes in flow rate and pressure. The pressure fields in oil- and gas-bearing formations are usually transient, and this gives rise to pressure/temperature effects appearing as temperature change. The magnitudes of these effects depend on the properties of the formation, flow geometry, time, and other factors and result in a reservoir temperature distribution that is changing in both space and time. In this study, these thermometric effects were modeled as convective, conductive, and transient phenomena with consideration for time and space dependencies. This mechanistic model included the Joule-Thomson effects resulting from fluid compressibility and viscous dissipation in the reservoir during fluid flow. Because of the nature of the models, the semianalytical solution technique known as operator splitting was used to solve them, and the solutions were compared to synthetic and real temperature data. In addition, by matching the models to different temperature-transient histories obtained from PDGs, reservoir parameters such as average porosity, near-well permeabilities, saturation, and some thermal properties of the fluid and formation could be estimated. A key target of this work was to show that temperature measurements, often ignored, can be used to estimate reservoir parameters, as a complement to other more-conventional techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.