Abstract

The effectiveness of boundary integral equation and grid-free methods for radial grids, as well as solutions of classical and nonclassical modeling and recovery problems for geological fields are analyzed. It is shown that, as opposed to the methods employing a variational technique and radial basis neural networks, hybrid algorithms (fuzzy neural networks, genetic algorithms, and Kalman filter) for solving identification and recovery problems are more stable with respect to noise and give positive results even with conflicting data and significant measurement noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.