Abstract

In the current study, an ability of a novel regression-based method is evaluated in modeling daily reference evapotranspiration (ET0), which is an important issue in water resources management and planning. The method was developed by hybridizing radial basis function and M5 model tree and called as radial basis M5 model tree (RM5Tree). The new model results were compared with traditional M5 model tree (M5Tree), response surface method (RSM), and two neural networks (multi-layer perceptron neural networks, MLPNN & radial basis function neural network, RBFNN) with respect to several statistical indices. Daily climatic data (relative humidity, RH, solar radiation, SR, wind speed, air temperature, T) recorded at three stations in Turkey, Mediterranean Region, were used. The effect of each weather data on ET0 was also investigated by utilizing three different input scenarios with various combinations of input variables. On the whole, the RM5Tree provided the best results (Nash and Sutcliffe efficiency, NES > 0.997) followed by the MLPNN (NES > 0.990), and M5Tree (NES > 0.945) in modeling daily ET0. The SR was observed as the most effective input parameter on ET0 which was followed by the T and RH. However, the findings of the third modeling scenario revealed that taking into account of all variables would considerably increase models’ accuracies for the three stations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.