Abstract
AbstractThe heterogeneous autoregressive model of realized volatility (HAR‐RV) is inspired by the heterogeneous market hypothesis and characterizes realized volatility dynamics through a linear function of lagged daily, weekly and monthly realized volatilities with a (1, 5, 22) lag structure. Considering that different markets can have different heterogeneous structures and a market's heterogeneous structure can vary over time, we build an adaptive heterogeneous autoregressive model of realized volatility (AHAR‐RV), whose lag structure is optimized with a genetic algorithm. Using nine common loss functions and the superior predictive ability test, we find that our AHAR‐RV model and its extensions provide significantly better out‐of‐sample volatility forecasts for the CSI 300 index than the corresponding HAR models. Furthermore, the AHAR‐RV model significantly outperforms all the other models under most loss functions. Besides, we confirm that Chinese stock markets' heterogeneous structure varies over time and the (1, 5, 22) lag structure is not the optimal choice. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.