Abstract

In this paper, we propose a physics-based and physiology-based approach for modeling real-time deformations of 3-D high-resolution polygonal lung models obtained from high-resolution computed tomography (HRCT) images of normal human subjects. The physics-based deformation operator is nonsymmetric, which accounts for the heterogeneous elastic properties of the lung tissue and spatial-dynamic flow properties of the air. An iterative approach is used to estimate the deformation with the deformation operator initialized based on the regional alveolar expandability, a key physiology-based parameter. The force applied on each surface node is based on the airflow pattern inside the lungs, which is known to be based on the orientation of the human subject. The validation of lung dynamics is done by resimulating the lung deformation and comparing it with HRCT data and computing force applied on each node derived from a 4-D HRCT dataset of a normal human subject using the proposed deformation operator and verifying its gradient with the orientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.