Abstract

This paper develops a detailed analysis of reaction–diffusion processes within a porous rhodium-alumina catalyst washcoat. Focused-ion-beam–scanning-electron-microscope (FIB–SEM) techniques are developed and applied to reconstruct the actual catalyst-support microstructure. Three-dimensional transport processes within washcoat micro-pore structures are modeled using a dimensionless representation of reaction and diffusion rates based on the Damköhler number. Three-dimensional computational solutions for particular porous microstructures are modeled and interpreted. In a companion paper, these microstructural results are used to assist development of larger-scale models that can be incorporated into reactor-scale simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.