Abstract

Using a hydrologic model this study estimated rainwater storages in field-scale on-farm reservoir (OFR) systems at two locations: (1) Fort Worth, Texas, US; (2) Kharagpur, West Bengal, India. The water storages were estimated for variable OFR sizes: 1%, 5%, 10%, 15%, and 25% of the farm area. Water losses through seepage and evaporation were estimated using variable saturated hydraulic conductivity conditions: 0.33, 0.64, 1.3, 5 cm/h, which corresponded to the ranges of hydraulic conductivity of loam, sandy loam, loamy sand, and sandy soils, respectively. Results indicated that the water loss through evaporation was dominant at the first location, while seepage was at the second location. Changing the OFR sizes captured 5 to 28% of the total rainfall received in the farm area of the first location and 20–40% at the second location. Finally, a comparative economic analysis was made between a distributed OFR system and a centralized large reservoir that indicated that the distributed OFR system benefits exceeded the benefits of a large reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.