Abstract

In this paper, we present an analytical model to characterize the average queuing delay for non-orthogonal multiple access (NOMA) downlink system by taking the outage event into account such that the user fails either decoding its own signal or performing SIC for the signals of other users at the receiver when the SINR is lower than a predefined outage threshold. The departure process of the queuing model is characterized by obtaining the first and second moment statistics of the service time that depends on the resource allocation strategy, the packet size and channel distributions. The proposed model is utilized to obtain the optimum power allocation that minimizes the maximum of the average queuing delay (MAQD) for a two-user network scenario. The Monte Carlo simulation experiments are performed to numerically validate the model by providing MAQD results for both NOMA and orthogonal multiple access (OMA) schemes. The results demonstrate that the NOMA achieves lower latency for low SINR outage thresholds while its performance is degraded faster than OMA as the SINR outage threshold increases such that OMA outperforms NOMA beyond a certain threshold. Another important result is that the latency performance of NOMA is significantly degraded when the 5G NR frame types having wider bandwidth are utilized. The results provide powerful insights for queuing delay analysis of 5G services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.