Abstract

In this research combustion of iron dust particles in a medium with spatially discrete sources distributed in a random way has been studied using a numerical approach. A new thermal model is generated to estimate flame propagation speed and quenching distance in a quiescent reaction medium. The flame propagation speed is studied as a function of iron dust concentration and particle diameter. The predicted propagation speeds as a function of these parameters are shown to agree well with experimental measurements. In addition, the minimum ignition energy has also been investigated as a function of equivalence ratio and particle diameter. The quenching distance has been studied as a function of particle diameter and validated by the experiment. Considering random distribution of particles, the obtained results provide more realistic and reasonable predictions of the combustion physics compared to the results of the uniform distribution of particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.