Abstract

The extended finite element method (X-FEM) is a numerical method for modeling strong (displacement) as well as weak (strain) discontinuities within a standard finite element framework. In the X-FEM, special functions are added to the finite element approximation using the framework of partition of unity. For crack modeling in isotropic linear elasticity, a discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are used to account for the crack. This enables the domain to be modeled by finite elements without explicitly meshing the crack surfaces, and hence quasi-static crack propagation simulations can be carried out without remeshing. In this paper, we discuss some of the key issues in the X-FEM and describe its implementation within a general-purpose finite element code. The finite element program Dynaflow™ is considered in this study and the implementation for modeling 2-d cracks in isotropic and bimaterial media is described. In particular, the array-allocation for enriched degrees of freedom, use of geometric-based queries for carrying out nodal enrichment and mesh partitioning, and the assembly procedure for the discrete equations are presented. We place particular emphasis on the design of a computer code to enable the modeling of discontinuous phenomena within a finite element framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.