Abstract

The charge transport properties of two fused-ring thienoacenes, (a) the syn-isomer of dibenzo-thieno-dithiophene (DBTDT), packing in the solid state with a π–π stacking arrangement and also known as bis-benzo-thieno-thiophene (BBTT) and (b) C6-DBTDT, an alkylated derivative, packing in the more conventional herring-bone arrangement, are investigated computationally in the framework of the non-adiabatic hopping mechanism. Charge transfer rate constants are computed within the Marcus–Levich–Jortner formalism including a single effective mode treated quantum mechanically and are injected in a kinetic Monte Carlo scheme to propagate the charge carrier in the crystal. Charge mobilities are computed at room temperature with and without the influence of an electric field and are shown to compare very well with the measured mobilities in single-crystal devices. Both systems show an almost 1D charge transport with C6-DBTDT displaying about a ten times larger mobility value, in agreement with experiment. It is shown that the role of the HOMO-1 orbital is not relevant for BBTT, while it might contribute to a more marked 2D charge transport character for C6-DBTDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.