Abstract

Horizontal wells have become a popular alternative for the development of hydrocarbon fields around the world because of their high flow efficiency caused by a larger contact area made with the reservoir. Most of the analytical work done in the past on horizontal productivity either assumed that the well is infinitely conductive or the flow is uniform along the entire well length. The infinite conductive assumption is good only when the pressure drop in the wellbore is very small compared to the drawdown in the reservoir otherwise the pressure drop in the wellbore should be taken into account. In this paper, an improved predictive model that takes into account the effect of all possible wellbore pressure losses on productivity index of long horizontal well was developed. Results show that the discrepancies in the predictions of the previous models and experimental results were not only due to effect of friction pressure losses as opined by Cho and Shah but may also be due to all prominent pressure losses such as kinetic change and fluid accumulation experienced by the flowing fluid in a conduit. The effect is most pronounced at the early production time where initial transience at the onset of flow is experienced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.