Abstract
We develop a model for simulating prion transport in a tunneling nanotube (TNT). We simulate the situation when two cells, one of which is infected, are connected by a TNT. We consider two mechanisms of prion transport: lateral diffusion in the TNT membrane and active actin-dependent transport inside endocytic vesicles. Endocytic vesicles are propelled by myosin Va molecular motors. Since the transit time of prions through a TNT is short (several minutes), the two population model developed here assumes that there is no interchange between the two prion populations, and that partitioning between the prion populations is decided by prion loading at the TNT entrance. The split between the two prion populations at the TNT entrance is decided by the degree of loading, which indicates the portion of prions that enter a TNT in endocytic vesicles. An analytical solution describing prion concentrations and fluxes is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.