Abstract

We develop discrete choice models that account for parameter driven preference dynamics. Choice model parameters may change over time because of shifting market conditions or due to changes in attribute levels over time or because of consumer learning. In this paper we show how such preference evolution can be modeled using hierarchial Bayesian state space models of discrete choice. The main feature of our approach is that it allows for the simultaneous incorporation of multiple sources of preference and choice dynamics. We show how the state space approach can include state dependence, unobserved heterogeneity, and more importantly, temporal variability in preferences using a correlated sequence of population distributions. The proposed model is very general and nests commonly used choice models in the literature as special cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.