Abstract

Photoelectrochemical (PEC) water splitting is a means to store solar energy in the form of hydrogen. Knowledge of practical limits for this process can help researchers assess their technology and guide future directions. We develop a model to quantify loss mechanisms in PEC water splitting based on the current state of materials research and calculate maximum solar-to-hydrogen (STH) conversion efficiencies along with associated optimal absorber band gaps. Various absorber configurations are modeled considering the major loss mechanisms in PEC devices. Quantitative sensitivity analyses for each loss mechanism and each absorber configuration show a profound impact of both on the resulting STH efficiencies, which can reach upwards of 25 % for the highest performance materials in a dual stacked configuration. Higher efficiencies could be reached as improved materials are developed. The results of the modeling also identify and quantify approaches that can improve system performance when working with imperfect materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.