Abstract

Exascale computing enables unprecedented, detailed and coupled scientific simulations which generate data on the order of tens of petabytes. Due to large data volumes, lossy compressors become indispensable as they enable better compression ratios and runtime performance than lossless compressors. Moreover, as (high-performance computing) HPC systems grow larger, they draw power on the scale of tens of megawatts. Data motion is expensive in time and energy. Therefore, optimizing compressor and data I/O power usage is an important step in reducing energy consumption to meet sustainable computing goals and stay within limited power budgets. In this paper, we explore efficient power consumption gains for the SZ and ZFP lossy compressors and data writing on a cloud HPC system while varying the CPU frequency, scientific data sets, and system architecture. Using this power consumption data, we construct a power model for lossy compression and present a tuning methodology that reduces energy overhead of lossy compressors and data writing on HPC systems by 14.3% on average. We apply our model and find 6.5 kJ s, or 13 %, of savings on average for 512GB I/O. Therefore, utilizing our model results in more energy efficient lossy data compression and I/O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.