Abstract

A novel model of the crystallization process in meltblowing process is proposed and implemented in numerical simulations. The spinline crystallization is studied using numerical solutions of the system of coupled quasi-one-dimensional equations describing the dynamics of multiple polymer jets moving in the surrounding high-speed air. Cooling, crystallization, and solidification accompany three-dimensional motion of polymer jets resulting in their vigorous stretching by the air flux including the aerodynamically driven bending/flapping. The numerical solutions predict distribution of the degree of crystallinity in polymer jets in flight, as well as in the laydown formed on the collecting screen, with the three-dimensional structure of the laydown being fully reconstructed. The effect of the collector screen temperature, die-to-collector distance (DCD), and the activation energy of the viscous flow in the polymer melt on the laydown features is studied in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call