Abstract

Strontium titanate is an incipient ferroelectric in which superconductivity emerges at exceptionally low doping levels. Remarkably, stabilizing the polar phase through strain or chemical substitution has been shown to significantly enhance the superconducting critical temperature, and the polar instability plays a pivotal role in the majority of proposed superconducting pairing mechanisms. A rigorous understanding of ferroelectricity is therefore essential to elucidate the electron pairing mechanism in this material. To investigate the nature of the polar order in strontium titanate, we develop a simplified free energy model that only includes the degrees of freedom necessary to capture the relevant physics in a biaxially compressively strained system. Our model is able to calculate the energies of large, disordered systems with near DFT-level accuracy. We simulate the ferroelectric and antiferrodistortive phase transitions using the Monte Carlo method and discuss the coupling between various order parameters. Finally, we assess the character of the polar transition, which we find to be neither strictly displacive nor order-disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call