Abstract

Modeling myelination in vitro allows mechanistic study of developmental myelination and short-term myelin maintenance, but analyses possible to carry out using currently available models are usually limited because of high cell density and the lack of separation between neurons and myelinating cells. Furthermore, regeneration studies of myelinated systems after lesion require compartmentalization of neuronal cell bodies, axons, and myelinating cells. Here we describe a compartmentalized method using microfluidics that allows live-cell imaging at the single-cell level to follow short- and long-term dynamic interactions of neurons and myelinating cells and large-scale analyses, e.g., RNA sequencing on pure or highly enriched neurons or myelinating cells, separately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.