Abstract
Photon propagation in biological tissue is commonly described by the radiative transfer equation, while the phase function in the equation represents the scattering characteristics of the medium and has significant influence on the precision of solution and the efficiency of computation. In this work, we present a generalized Delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect to photon fluence rate. Comparing to the popular diffusion approximation model, the solution of the integral equation is highly accurate to model photon propagation in the biological tissue over a broad range of optical parameters. This methodology is validated by Monte Carlo simulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.