Abstract

Lake Allatoona is a large reservoir north of Atlanta, GA, that drains an area of about 2870 km2 scheduled for a phosphorus (P) total maximum daily load (TMDL). The Soil and Water Assessment Tool (SWAT) model has been widely used for watershed-scale modeling of P, but there is little guidance on how to estimate P-related parameters, especially those related to in-stream P processes. In this paper, methods are demonstrated to individually estimate SWAT soil-related P parameters and to collectively estimate P parameters related to stream processes. Stream related parameters were obtained using the nutrient uptake length concept. In a manner similar to experiments conducted by stream ecologists, a small point source is simulated in a headwater sub-basin of the SWAT models, then the in-stream parameter values are adjusted collectively to get an uptake length of P similar to the values measured in the streams in the region. After adjusting the in-stream parameters, the P uptake length estimated in the simulations ranged from 53 to 149 km compared to uptake lengths measured by ecologists in the region of 11 to 85 km. Once the a priori P-related parameter set was developed, the SWAT models of main tributaries to Lake Allatoona were calibrated for daily transport. Models using SWAT P parameters derived from the methods in this paper outperformed models using default parameter values when predicting total P (TP) concentrations in streams during storm events and TP annual loads to Lake Allatoona.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call