Abstract

Modeling the pH dependence of protein and peptide chemical shifts outside the range of physiological values (6.5–7) is key to understanding structure-function relationships of these systems. These capabilities are largely not available in current chemical shift prediction software. In this study, we utilize a combination of molecular dynamics and quantum mechanics to investigate the through-space and through-bond contributions of protonation-dependent chemical shift perturbations (CSPs) in model tripeptides. By altering the protonation state of the titratable group in the tripeptides, we observe a notable difference in the conformational ensembles and attendantly compute significant CSPs for all nuclei near the site of protonation. We thus demonstrate the ability to recapitulate experimental pH-dependent CSPs with good agreement (R = 0.85, 0.99, and 0.98 for 13C, 15N, and 1H, respectively). Broadly, we provide the groundwork for incorporating pH effects into empirical and semiempirical chemical shift predictors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call