Abstract

In a personal communication service (PCS) network, the call completion probability and the effective call holding times for both complete and incomplete calls are central parameters in the network cost/performance evaluation. These quantities will depend on the distributions of call holding times and cell residence times. The classical assumptions made in the past that call holding times and cell residence times are exponentially distributed are not appropriate for the emerging PCS networks. This paper presents some systematic results on the probability of call completion and the effective call holding time distributions for complete and incomplete calls with general cell residence times and call holding times distributed with various distributions such as gamma, erlang, hyperexponential, hyper-erlang, and other staged distributions. These results provide a set of alternatives for PCS network modeling, which can be chosen to accommodate the measured data from PCS field trials. The application of these results in billing rate planning is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.