Abstract

We present a detailed quantitative comparison between a finite-difference traveling wave (FDTW) model and a delayed differential equation (DDE) approach for the simulation of passive mode-locking in quantum dot lasers with both ring and Fabry-Perot (FP) cavities. Modifications with respect to the standard DDE models available in the literature are proposed. The new DDE approach improves the quantitative agreement with the FDTW model when applied to the simulation of passive mode-locking in FP lasers, preserving a very high computational efficiency. The modifications proposed in the DDE model also apply to the simulation of quantum-well and bulk devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.