Abstract
The performance of the pantograph–catenary system plays a significant role in determining the reliability and safety of a high-speed train. With an increase in train speed, repeated separations between the pantograph and catenary result in an increased number of arcing events, which exacerbate the levels of damage on the pantograph–catenary system, leading to frequent train accidents. The arcing event is a complex phenomenon that is influenced by various factors, and involves interactions between the electromagnetic, thermal and airflow fields. The high temperatures generated by an arc result in ablation of material in the pantograph–catenary system, thus reducing its life expectancy. In order to investigate the mechanism of this damage to the pantograph–catenary system, a model of the arcing phenomenon is established and analyzed. In the proposed model, a set of arc plasma conservation equations are solved to determine the temperature distribution in the arc. The influences of different experimental conditions on the characteristics of the arc and the temperature distributions in the catenary wire and pantograph strip are calculated and discussed. Finally, the results obtained in the simulation studies are compared with realistic arc images recorded using a high-speed camera, and a good agreement is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.