Abstract

Automated placement technology has been widely used due to its excellent processing adaptability for large composite components with complex geometric structures. Whereas, it still poses challenges to study the effect of manufactured gaps induced by automated placement on curved composite parts. This study proposes a new geometric reconstruction approach based on consolidation and sweeping formation to model manufactured gaps. Additionally, a mechanical model incorporating the reconstructed geometry and the cohesive layer method is established to predict the physical behaviors of curved laminates. The micrograph of automated placement-induced gaps with 90° orientation was used to verify the rationality of the geometric reconstruction approach of gaps forming in the preparation process of composite materials. According to predictions of the proposed mechanical model, the effect of − 45° oriented gap defects on curved laminates was validated via four-point bending tests that confirmed alignment between predictions and experimental results for peak load, crack propagation, and failure patterns. Experimental results show that due to the differences in spatial local geometric features, orientations of gap defects would reduce the bending strength to different degrees and significantly affect the failure pattern of curved laminates. Furthermore, curved laminates with wider gaps experience a more considerable reduction in load-bearing capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call