Abstract
The paper puts forward an approach to the analysis of stress state and fracture of surface layers in deformed solids. The approach is based on the consideration of contact interaction processes at several scale levels determined by characteristic structural parameters of the surface and subsurface layers of contacting bodies (micro- and mesoscales) and by their macrogeometry. The approach can be used to estimate the influence of geometrical, mechanical and physical characteristics of materials of contacting bodies and the intermediate medium on the performance of friction pairs. Methods of increasing the wear resistance and service life of the pairs and reducing energy loss owing to the control of wear and friction processes in thin surface layers can be developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.