Abstract

Problems of wave propagation in poroelastic bodies and media are considered. The behavior of the poroelastic medium is described by Biot theory for partially saturated material. Mathematical model is written in term of five basic functions – elastic skeleton displacements, pore water pressure and pore air pressure. Boundary element method (BEM) is used with step method of numerical inversion of Laplace transform to obtain the solution. Research is based on direct boundary integral equation of three-dimensional isotropic linear theory of poroelasticity. Green’s matrices and, based on it, boundary integral equations are written for basic differential equations in partial derivatives. Discrete analogue are obtained by applying the collocation method to a regularized boundary integral equation. To approximate the boundary consider its decomposition to a set of quadrangular and triangular 8-node biquadratic elements, where triangular elements are treated as singular quadrangular. Every element is mapped to a reference one. Interpolation nodes for boundary unknowns are a subset of geometrical boundary-element grid nodes. Local approximation follows the Goldshteyn’s generalized displacement-stress matched model: generalized boundary displacements are approximated by bilinear elements whereas generalized tractions are approximated by constant. Integrals in discretized boundary integral equations are calculated using Gaussian quadrature in combination with singularity decreasing and eliminating algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call