Abstract

Spatial and temporal variations of the water table could be explained by the one-dimensional Boussinesq equation by incorporating the variables of evapotranspiration and groundwater recharge with appropriate initial and boundary conditions. In this study, the stream-aquifer interaction has been investigated through a numerical example model with the implementations of Galerkin's method-based Finite Element Solution (FES), Hybrid Finite Analytic Solution (HFAS), Fully Implicit Finite Difference Solution (FIFDS) of one-dimensional nonlinear Boussinesq equation, and analytical solutions of the Boussinesq equation linearized by Baumann's transformation (AS I) as well as linearized by Werner's transformation (AS II). Considering HFAS as the benchmark solution, it was observed that in both recharging and discharging aquifers, water table profiles at 1 day and 5 days as obtained from FES followed by FIFDS were observed quite close to HFAS. Based on L2 and Tchebycheff norms, FES and FIFDS were ranked in first and second place, respectively. L2 and Tchebycheff norms could not consistently establish the performance ranking of analytical solutions but their performance ranking was certainly below the numerical solutions. The performance ranking of analytical solutions could not consistently be established using the L2 and Tchebycheff norms, but it was certainly below the numerical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.