Abstract

The effects of velocity on moving sources are encountered in many practical eddy current applications. In many instances these effects are ignored either because velocities are relatively low, because of our inability to quantify these effects, or for purposes of simplifying the solution. There are, however, a number of important applications in which this cannot be done and full account of velocity must be taken. Some obvious applications are magnetic recording, magnetic braking, and nondestructive testing. This work presents a finite element formulation for eddy current problems that takes into account the relative movement of sources. Results are presented indicating that velocity effects are significant at high velocities, and are important for correct signal interpretation. The effect of velocity on nondestructive testing signals is investigated and shown to display significant deviation from static behavior. Because of the form of the governing equations, spurious, nonphysical solutions may be generated. These are eliminated by two separate methods. One involves refinement of the finite element mesh and the second, upwinding of the finite elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.