Abstract

A mathematical model of multicomponent vacuum desorption, which occurs in vacuum freeze-drying process, was developed. In freeze-drying porous biomaterials and pharmaceuticals are considered and the vacuum freeze-drying process, especially the moisture desorption in its final stage, is investigated. In this article, the drying with conductive heating and constant contact surface temperature was considered. Pressure drop is taken into account in the model formulation but was neglected in process simulation because of thin material layers undergoing freeze-drying. Model equations were solved by numerical method of lines. Moisture content and temperature distributions within the drying material were predicted from the model as a function of drying time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call