Abstract
The chapter describes a numerical technique for modeling the spatial unsteady motion of matter in gas astrophysical objects. Convective processes with the formation of vortex structures in a fast-rotating star under self-gravity conditions are simulated. The modeling of spatially unsteady motion in an accretion disk at the boundary with a neutron star is also performed. The numerical technique used is based on a finite-difference analog of the conservation laws of the medium additive characteristics for a finite volume. For astrophysical objects under self-gravity conditions, the direct calculation of gravitational forces is realized by summing the interaction between all finite volumes in the integration area. Evolutionary calculations are based on the parallel algorithms implemented on the computer complexes of cluster architecture. The algorithms use parallelization in space and in physical factors. Visualized pictures of spatial non-stationary structures are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.