Abstract

In this article, three different methods for modeling of twophase frictional pressure gradient in circular pipes are presented. They are effective property models for homogeneous two-phase flows, an asymptotic modeling approach for separated two-phase flow, and bounds on two-phase frictional pressure gradient. In the first method, new definitions for two-phase viscosity are proposed using a one-dimensional transport analogy between thermal conductivity of porous media and viscosity in two-phase flow. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. In the second method, a simple semi-theoretical method for calculating two-phase frictional pressure gradient using asymptotic analysis is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the final method, simple rules are developed for obtaining rational bounds for two-phase frictional pressure gradient in circular pipes. In all cases, the proposed modeling approaches are validated using the published experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call