Abstract

This paper consists of theoretical modeling and computer simulation of two phase isothermal flow in a convergent divergent nozzle. First general expressions to determine velocity at any point, velocity at throat and speed of sound for two phase isothermal flow through convergent divergent nozzle as a function of pressure and initial volume ratio are developed using basic laws of energy, momentum and ideal gas equation. Then continuity equation is used to derive an expression for area ratio. By using these expressions data is generated for various values of initial volume ratios. Variation in Mach number ratio, velocity ratio, volume ratio, density ratio, pressure ratio with change in area ratio is also observed. A comparison of analytical results with experimental data shows minor deviations. The model developed can be applied to all realistic isothermal compressible two phase flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.