Abstract

We report on a computational approach based on the self-consistent solution of the steady-state Boltzmann transport equation coupled with the Poisson equation for the study of inhomogeneous transport in deep submicron semiconductor structures. The nonlinear, coupled Poisson-Boltzmann system is solved numerically using finite difference and relaxation methods. We demonstrate our method by calculating the high-temperature transport characteristics of an inhomogeneously doped submicron GaAs structure where the large and inhomogeneous built-in fields produce an interesting fine structure in the high-energy tail of the electron velocity distribution, which in general is very far from a drifted-Maxwellian picture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.