Abstract

Traffic management is a critical activity, the population is increasing day by day and so the traffic on the road is also increasing. Traffic jams and long waiting queues of vehicles at the road crossing are now part of everyone's life. The traffic lights used at the crossing to regulate the traffic play a vital role in the smooth functioning of traffic movement. At a crossing of four roads, it has been observed that giving an equal amount of green light to all roads is meaningless since the arrival of traffic on different paths is different. Importantly, the arrival rate is responsible for all traffic jams, long queues, and increased waiting time. Therefore, this paper suggests a green light allocation scheme for all paths i depending on the arrival rate of the vehicles. Thus, the allocation of green light will be dynamic. Further, weight is also computed, where more arrival rate means more weight, thereby assigning more time to the green signal. This will help in reducing the long queue length, residual traffic, and long waiting times. On simulating the traffic with the traffic data, the proposed optimized green light allocation scheme to path i reduces the residue traffic to negligible, allowing smooth traffic flow even during peak hours. The work also provides a proficient optimization of the waiting time of vehicles accumulated during the red light. According to the simulation, the maximum time assigned for the green signal during the peak hour of 9:30 AM to 10:00 AM for paths i, where 1≤i≤4 is 39.96, 33.36, 26.64, and 20.04 seconds respectively. Similarly, during the second rush hour of 5:00 PM to 6:00 PM, the simulation assigns a green signal time of 41.4, 37.2, 24.84, and 16.56 seconds for corresponding paths 1–4. Thus, the proposed work suggests an effective traffic management scheme at the four-road crossing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.