Abstract
The M-shaped tool influence function (TIF) usually comes out when adopting a large tool offset at the high-efficiency polishing stage in bonnet polishing. Its modeling is as important as the Gaussian-like TIF for the polishing process. However, the existing reports on the TIF of bonnet polishing are mostly about the Gaussian-like TIF model, or the model which cannot accurately simulate the M-shaped TIF. Viewing this, an optimized TIF model about the semirigid (SR) bonnet tool is presented based on the finite element analysis method which can be used to model both M-shaped and Gaussian-like TIFs. The verification experiments show that the simulated TIFs based on this model are in good agreement with the actual measured TIF. The relative deviation between them is about only 5 % in terms of root mean square value of the residual error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.