Abstract

During the last 50 years extensive experimental investigation has been carried out on the chemical effects of ultrasound, but limited work has been reported on modeling. This paper presents a new model in which a numerical calculation of the three-dimensional linear sound pressure field distribution in a commonly used sonoreactor containing three transducers is carried out. In this model the inhomogeneous three-dimensional time-dependent wave equation was solved using the finite difference approach. The modeled results are then compared with the experimentally measured values, and the agreement, in general, is found to be good. Further, our modeling studies have an advantage, since they clearly describe the continuous sound pressure field structure, unlike previously reported results in which some information is missing due to limited intermittent measured points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.